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Ab initio interionic potentials for CaO by multiple lattice inversion
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Abstract

Using Chen–M̈obius inversion, we derive the interionic pair potentials from pseudopotential total-energy curves of the CaO crystals in B1,
B3 and two P4/mmm virtual structures. Based on these potentials, the static properties of CaO in the rocksalt phase are calculated. Moreover,
the phase stability of B1–CaO has been described by the energy minimizations from the disordered to the ordered states. Furthermore, the
pressure-induced phase transition, phonon dispersion curves and properties of (CaO)n clusters have also been investigated. Compared with
experimental data, most of our results indicate that the present calculated potentials are effective for studying properties of CaO ionic crystal.
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. Introduction

Based on the Chen–M̈obius inversion[1–4]and a series of
seudopotential total energy curves, the interionic pair poten-

ials can be derived from multiple virtual structures[5]. Using
he ab initio interionic potentials, the static properties of ACl
A = Li, Na, K, Rb), molecular dynamics simulations, temper-
ture dependences of volume, bulk modulus and elastic con-
tants are calculated. The results are in good agreement with
he experimental values[6]. Not only the properties presented
bove but also the B1–B2 transition path in NaCl and RbCl,
nd the energies and stabilities of NaCl clusters are simulated.
hese are in excellent agreement with the experimental ob-
ervations[7–9]. The successful results motivated us to use
his concise and rigorous approach in simulating the proper-
ies of alkaline-earth oxides MgO, CaO, SrO, and BaO. These
xides have long been considered as a typical case for under-
tanding bonding in ionic oxides and they are also one of the
ost fundamental materials for industrial application[10].
In the present work, we focus our interests on calcium ox-

de, CaO. CaO may be the most abundant component next

to the major components, MgO and SiO2, in the Earth’s
lower mantle [11]. For this reason, considerable exp
ments have been paid to the elastic properties, static
pression and equation of state, B1–B2 phase transition
high-temperature thermal expansion of CaO[12–16]. Severa
successful theoretical models have also been introduc
investigate the properties and behaviors of alkaline-eart
ides including CaO. For example, Potential-induced bre
ing model (PIB model) has calculated the second-o
elastic moduli, high-pressure behavior, phonon disper
equations of state and B1–B2 phase-transition pressu
alkaline-earth oxides[17–19]. Breathing shell model (BSM
was used to examine the elastic constants, temperature d
dences as well as the temperature–pressure–volume eq
of states of both MgO and CaO[20]. Also, the elastic prope
ties and pressure dependence of four B1-type alkaline-
oxides were calculated using the ab initio full-potential lin
muffin-tin-orbital (FP-LMTO) generalized gradient appr
imated (GGA) method to elucidate their systematics[10].
Transferable potential models of interatomic interaction
CaO, SrO, and BaO were obtained by fitting the forces
∗ Corresponding author. Tel.: +86-10-6277-2783;
ax: +86-10-6277-2783.
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stress tensor given by the aspherical ion model (AIM) to
predict thermal expansivities, elastic constants, phonon dis-
persion curves and pressure-driven phase transitions[21]. In
most of the previous work[19–21], the interionic potentials
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were started from the selection of interionic potential function
forms with adjustable parameters, and then the potential pa-
rameters were obtained by fitting to the experimental data or
calculation results. But our lattice-inverse potentials[5,6] are
derived from ab initio calculations without any experimen-
tal data and priori potential function forms. This approach is
more concise and convenient compared to other models and
methods.

The paper is organized as follows: InSection 2, we in-
troduce the scheme on how to derive the inversion interionic
potentials from the total energies of CaO multiple lattices
based on Chen–M̈obius lattice inversion.Section 3contains
the application of our potentials to calculate the static proper-
ties, bulk modulus and elastic constants, stability of B1–CaO
crystal. We also simulated the transition from the disordered
to ordered CaO. As a further test of present potentials, phonon
dispersion, B1–B2 phase-transition pressure and stability of
CaO clusters are also presented in this section. All the results
are discussed and compared with other models and experi-
ments.Section 4summarizes the results.

2. Description of inversion pair potential

2.1. Virtual structural models
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The total energyEB3
tot (a) of B3 (zinc blend structure) is

EB3
tot (a) = EB3

Ca O(a) + Efcc
Ca Ca(a) + Efcc

O O(a) + Eiso. (2)

If the four structures have the identical lattice constanta,
from B1 to B3 only the cation-anion interaction undergoes
the change for their identical like-sign ionic sublattices. The
difference between B1 and B3 structures is only the relative
displacement of cation and anion sublattices. From B1 to
B3, the Ca Ca and O O distances are unaffected by this
displacement, and their total-energy difference is only about
the Ca O interactions and can be expressed as

�ECa O(a) = EB1
tot (a) − EB3

tot (a) = EB1
Ca O(a) − EB3

Ca O(a).

(3)

Then the CaO pair potential curve can be evaluated by
lattice inversion[3,4]. However, if the B2 (CsCl-type) model
is selected, from B1 to B2, the CaO, Ca Ca, and OO
interactions all undergo changes because cations and anions
in the B2 structure are placed on the sc (simple cubic) sub-
lattices. Therefore the combination of B1 and B2 structures
could not give more information than the single B1 or B2
structure.

In order to obtain the OO interaction from the total en-
e
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In terms of the descriptions of pair potentials[22], the tota
nergyEB1

tot (a) of B1 (NaCl-type) structure at lattice const
can be expressed as Eq. (1), which includes three kin

onic interactionsEB1
Ca O(a), Efcc

Ca Ca(a), andEfcc
O O(a),

B1
tot (a) = EB1

Ca O(a) + Efcc
Ca Ca(a) + Efcc

O O(a) + Eiso, (1)

here theEfcc
Ca Ca(a) andEfcc

O O(a) are the like-ion contri
utions on fcc (face-centered-cubic) sublattice,Eiso is the
nergy of isolated ions, which is independent of the in
nic separation. As is known to us all, CaO initially ex

n B1 (NaCl-type) structure that is expected to transform
2 (CsCl-type) structure at high pressure[15]. Only with B1
nd B2 structures, we cannot derive the inversion inter
otentials. So three other virtual structures (B3, T1, T2

ntroduced with regard to B1 structure, which may not e
n nature, as shown inFig. 1.

ig. 1. Structures used for ab initio pseudopotentials total-energy ca
ositions. (a) B1 (rocksalt) structure; (b) B3 (zinc blende) structure; (
tructure for cation-cation interaction). Both B1 and B3 are formed b
tructures.
ns. White balls denote cation (Ca2+) positions and black balls show anion (O2−)
tructure (virtual structure for anion–anion interaction); (d) T2 structure (virtua
cc sublattices, and a fcc and a tetragonal sublattices are included ind T2

rgies, the T1 structure is built as shown inFig. 1(c), which
onsists of a cation fcc and an anion tetragonal sublattic
otal energy can be expressed as

T1
tot(a) = ET1

Ca O(a) + Efcc
Ca Ca(a) + Etetra

O O(a) + Eiso. (4)

For B1– and T1–CaO at the same lattice constanta, their
ation–cation interactionEfcc

Ca Ca(a) andEfcc
Ca Ca(a) are iden

ical, and their contributions from unlike-ion interactions
e separately calculated by the above CaO pair potential
ence, the partial lattice energy as a function of the OO
air potential can be derived from the total-energy differe
etween B1– and T1–CaO, which can be expressed as

EO O(a) = EB1
tot (a) − ET1

tot(a)

= EB1
Ca O(a) + Efcc

O O(a)−ET1
Ca O(a)−Etetra

O O(a).

(5)
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As for the cation–cation interaction, the T2 structure as
shown inFig. 1(d) is generated by exchanging the atomic
sites of cations and anions in the T1 structure. The T1 and
T2 structures have the same space group P4/mmm. Then the
total energy of T2–CaO is

ET2
tot(a) = ET2

Ca O(a) + Etetra
Ca Ca(a) + Efcc

O O(a) + Eiso. (6)

Similarly, the Ca Ca partial lattice energy can also be
obtained from the total-energy difference between B1– and
T2–CaO.

As for the total energies of CaO crystals in B1, B3,
T1, and T2 structures, they were calculated by using the
LDA implemented in the CASTEP (Cambridge Serial Total
Energy Package) program[23,24]. The norm-conserving
pseudopotentials for Ca and O were used in this work. A
plane-wave basis set with 560 eV cutoff was applied. The
k-mesh points over the Brillouin zone were generated with
parameters 4× 4 × 4 for the biggest reciprocal space and 1
× 1× 1 for the smallest one by the Monkhorst–Pack-scheme
[25] corresponding to the lattice constanta. The energy tol-
erance for self-consistent field (SCF) convergence was 2×
10−6 eV/atom for all calculations.Fig. 2shows the calculated
total energies of B1-, B3-, T1-, and T2-type CaO crystals as
a function of crystal lattice constanta.

2
i

een
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c

�
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in which �ESR
Ca O(a) is the short-range interaction, and

�ECoul
Ca O(a) is the long-range Coulomb part between B1–

and B3–CaO. According to the multiple lattice inversion[5],
Coulomb interaction can be calculated by the fixed effective
charges over a wide range of interionic distances but when we
use the same approach on determining the effective charges
of CaO, we find even if we regard the lattice energies approx-
imately as only the sum of Coulomb potential when lattice
constanta ≥ 10.0Å, the fixed ionic charges cannot be deter-
mined by fitting the total energy difference between B1– and
B3–CaO at larger lattice constant. On the other hand, if we
use the full ionic charges, 2.0e, as the effective charges, the
non-Coulomb energy difference between B1– and B3–CaO
at larger lattice constant is still different and the difference
tends to a constant (Fig. 3). According to the result, we may
conclude that this energy constant may be caused by many-
body effect. So we introduced a three-body interaction model
which is only relative to the angle between cation and anion
[26]. The interaction can be expressed as

φijk(θ) = C[1 − (−1)nB cos(nθijk)], (8)

whereB andn are, respectively, 1 and 4.θijk is the angle be-
tween ionsi, j andk indicating the lattice sites of ions.C is the
undetermined coefficient. For a determinate fabric, the three-
body interaction can be determined only by the coefficientC
a
c ngle.
F ibute
t
w 36
p cient
C n be
i ree-
b omes
.2. Ca O interionic potential and three-body
nteraction model

According to Eq. (3), the total-energy difference betw
1– and B3–CaO only depends on the CaO interaction, an
an be rewritten as

ECa O(a) = �ECoul
Ca O(a) + �ESR

Ca O(a), (7)

Fig. 2. Total energies in different CaO structures v
 e constanta from ab initio pseudopotentials calcultations.

nd the interaction does not vary with lattice constanta be-
ause the three-body interaction is only relevant to the a
or B1 structure, the three-body potential does not contr

o the total-energy on account of the 90◦ or 180◦ bond-angle
hile for B3 structure, the three-body angle energy is 4.7C
er atom. For the model presented above, if the coeffi
has been determined, the short-range interaction ca

gnored at larger lattice constant so the difference of th
ody interaction energy between B1– and B3–CaO bec
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a constant that can explain the invariant energy constant (see
�E in Fig. 3) between B1 and B3 non-Coulomb interaction.
According to this model, the non-Coulomb interaction can be
regarded only as the sum of short-range two-body potential
and three-body interaction,

Enon-Coul=
∑
i,j

φ(rij) +
∑
i,j,k

φ(θijk). (9)

After introducing the three-body interaction model, we
can rewrite Eq. (7) as

�ECa O(a) = EB1
tot (a) − EB3

tot (a)

= �ECoul
Ca O(a) + ESR

Ca O(a) − EB3
ang, (10)
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i

range interaction difference between B1– and B3–CaO is

�ESR
Ca O(a) = EB1

Ca O(SR)(a) − EB3
Ca O(SR)(a)

= EB1
tot (a) − EB1

Coul(a) − EB3
tot (a)

+EB3
Coul(a) + EB3

ang. (11)

For the B1-type CaO, the short-range CaO interaction
per ion can be expressed as

EB1
Ca O(SR)(a) = 1

2

∑
i,j,k

φSR
Ca O

(√
(i + k − 1)2 + (i + j − 1)2 + (j + k − 1)2

a

2

)
, (12)

where theφSR
Ca O is the Ca O short-range pair potential, and

the i, j, k indicate the atomic sites of ions in the unit of the
lattice constanta. In the B3–CaO, the CaO short-range in-
teraction per ion is

EB3
Ca O(SR)(a) = 1

2

∑
i,j,k

φSR
Ca O



√(

i + k − 1

2

)2

+
(

i + j − 1

2

)2

+
(

j + k − 1

2

)2
a

2


 . (13)

Thus, based on the Chen–Möbius lattice inversion[1–4],
the interaction�ESR

Ca O(x) per ion can be expressed as the
form as follows:

�ESR (x) = 1∑
r0(n)φSR [b0(n)x], (14)
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hereEB3
ang, a constant, is the three-body interaction en

f B3 CaO and�ECoul
Ca O(a), the difference of Coulomb e

rgy between B1– and B3–CaO, can be calculated vi
adelung constants[27] of B1 and B3 structures or Ewa

ummation techniques[28] with the fixed ionic charges. Th
xed ionic charges andC in three-body interaction mod
an be obtained by using Coulomb potential plus an und
ined constant to fit the total energy difference between
nd B3–CaO at larger lattice constant. After the determ

ion of the fixed chargesq+, q− and constantC, the short

ig. 3. The invariant energy constant�E between B1 and B3 non-Coulom
nteraction at larger lattice constant.
Ca O 2
n

Ca O

herex is the nearest-neighbor distance,b0(n)x is thenth-
eighbor distance, andr0(n) is thenth coordination numbe
he series{b0(n)} is extended into a multiplicative sem
roup. Then for any two integersmandn, there always exis
n integerk such that

(k) = b(m)b(n) (15)

The�ESR
Ca O(x) can be rewritten as

ESR
Ca O(x) = 1

2

∑
n

r(n)φSR
Ca O[b(n)x] (16)

here

(n) =
{

r0(b−1
0 [b(n)]) if b(n) ∈ {b0(n)}

0 if b(n) /∈ {b0(n)} (17)

Thus the pair potentialsφSR
Ca O between Ca and O ions c

e expressed as

SR
Ca O(x) = 2

∞∑
n=1

I(n)�ESR
Ca O[b(n)x], (18)

n which the inversion coefficientI(n) is given by

∑
(n)/b(k)

I(n)r

[
b−1

(
b(k)

b(n)

)]
= δk1, (19)

hen the short-range CaO pair potential curve is obtaine
rom lattice inversion as shown inFig. 4. The shape ofpa
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Fig. 4. Short-range interionic potentials for CaO.

potential curve indicates the repulsive exponential function
form is suitable to express the CaO short-range interaction,
and then the total CaO pair potential is

ΦCa O(r) = φSR
Ca O(r) + φCoul

Ca O(r)

= D+− exp

[
γ+−

(
1 − r

R+−

)]
+ q+q−

4πε0r
.

(20)

2.3. O O interionic potential

Using the above inverted CaO pair potential, we can cal-
culate the CaO interaction in B1– and T1–CaO crystals, re-
spectively. Then the short-range OO interaction difference
between B1– and T1–CaO is obtained by

�ESR
O O(a) = EB1

O O(SR)(a) − ET1
O O(SR)(a)

= EB1
tot (a) − EB1

Coul(a) − EB1
Ca O(SR)(a) − ET1

tot(a)

+ET1
Coul(a) + ET1

Ca O(SR)(a). (21)

can
b

E

r-
a

ET1
Ca O(SR)(a)

= 1

2

∑
i,j,k

φSR
Ca O

×


√(

i + k − 1

2

)2

+
(

i + j − 1

2

)2

+ (j + k)2
a

2


 ,

(23)

ET1
O O(SR)(a) = 1

4

∑
i,j,k �=0

φSR
O O

(√
i2 + 4j2 + k2a

2

)
. (24)

By Chen–M̈obius lattice inversion, the OO short-range
potential is calculated asFig. 4. In terms of the curve shape, a
Morse-stretch function form is selected for OO short-range
potential, and finally the OO pair potential is

ΦO O(r) = D−−

({
1 − exp

[
γ−−

(
1 − r

R−−

)]}2

− 1

)

+ q−q−
4πε0r

. (25)
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The O O short-range interaction per ion in B1–CaO
e expressed as

B1
O O(SR)(a) = 1

4

∑
i,j,k �=0

φSR
O O

×
(√

(i + j)2 + (i + k)2 + (j + k)2
a

2

)
(22)

In the T1 structure, the CaO and O O short-range inte
ctions are separately defined as follows:
.4. Ca Ca pair potential

By the similar method for OO pair potential, the CaCa
air potential can also be obtained. Based on our calcula

he short-range interaction between Ca ions is very sma
an be neglected, thus the CaCa interaction can be express
nly by Coulomb potential,

Ca Ca(r) = q+q+
4πε0r

. (26)

Finally, all the potential parameters have been obtain
iven inTable 1.

. Test for the interionic pair potentials

.1. Static properties of CaO crystal

Using the above interionic potential from multiple latt
nversion, we first calculated the static properties of equ
ium B1–CaO at zero temperature and pressure. Static r
or the lattice constant, lattice energy, bulk modulus, and
ic constants are shown inTable 2together with a compariso
o results obtained by aspherical ion model[21], potential-
nduced breathing model[17] and shell model (BSM)[20].
y comparison, the static results have also been calcu
y COMPASS Forcefield[29] and other ab initio data[10],

he experimental results are also listed inTable 2.
From Table 2, the calculated lattice constant, lattice

rgy of B1–CaO are in agreement with experimental re
specially the lattice constant by present lattice inver
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Table 1
Interionic parameters derived by lattice inversion in this work

Non-Coulomb Coulomb

2-Body short-range interaction 3-Body

Ion pair Function form Dij(eV) Rij(Å) γij C (eV) Qeff

−− Morse 0.74426 2.47913 3.61839 0.030789 1.97539e
+− Exp-repulsive 0.12485 3.30713 8.75162

interionic potentials. In bulk modulus calculation, except the
AIM [21] and PWPP-LDA[10] results, other potential mod-
els and ab initio calculations give small deviation from exper-
imental results[12,17]. The result of bulk modulus by PIB
model [17] is 10.5% lower than the experiment and BSM
[20] gives 7.1%, FP-LMTO[10] gives 4.3% and LMTO-ASA
LDA [10] gives 15.8% lower than the experiment respec-
tively. The LAPW LDA[10] calculation gives the bulk mod-
ulus 13.2% larger than the experimental result, COMPASS
[29] gives 22.8% and present potentials give 13.9% larger
than the experimental result. The elastic constants depend on
the second derivatives of the energy and thus a very accurate
energy model is required to reproduce them accurately[21].
Although PWPP-LDA[10] reproduced good result on bulk
modulus, it has not done well onC11 with 7.2% larger than
experimental result and that is also subtly underestimated by
PIB [17] with 7.6% and BSM[20] with 7.8% deviation re-
spectively. The agreement of present result with experimen-
tal data is excellent with a deviation of 5.6% and the best
calculated data is reproduced by COMPASS[29] (with a de-
viation of 0.4%) and AIM[21] (with a deviation of 3.9%).
BothC12 andC44 results of present work and COMPASS are
largely overestimated but present lattice inversion potentials
reproduced the measured deviation from the Cauchy equal-
ity (C11 = C44 for cubic crystals) successfully. The so-called
C ny

T
T odulus
a

lattice (e

P
C
A
P
B
F
P
L
L
E

P MPASS
p The ot or
c

model based on two-body central forces, so our three-body
interaction model can provide a good measurement of the
many-body effect.

Besides the static properties of B1–CaO, another impor-
tant test for the potential validity is using the potentials
obtained from the properties of one phase to calculate the
properties of other phases of a material. In this work we used
the potentials from B1 and virtual structures to calculate the
properties of B2 phase, while the B2 structure has not been
used in the potential derivation. For comparison, the prop-
erties of B2–CaO have also been calculated based on the
previous theories and experiment. All results are shown in
Table 3.

The results of present work inTable 3are seen to re-
produce lattice constant more accurately at 60 GPa than the
COMPASS Forcefield[29] compared with the experimental
measurement[15]. The lattice constant, lattice energy and
bulk modulus are also close to modified potential-induced-
breathing (MPIB) model[19] and the First-principles calcu-
lation[30]. This shows that present interionic potentials have
good transferability between B1 and B2 phases. The reason
may be that our potentials were derived from the B1 and its
related virtual structures, and this covers more configurations
of phase space. Hence, despite that the B2 was not involved in
the potential derivation, the potentials still well reproduced
t sful
auchy violation (C11 �= C44) cannot be reproduced by a

able 2
he equilibrium lattice constant, lattice energy (per molecule), bulk m
b initio methods

Lattice constant,a0 (Å) Lattice energy,E

resent work 4.842 34.92
OMPASS[29] 4.798 35.41
IM [21] 4.809
IB [17] 4.820 30.10
SM [20]a

P-LMTO [10] 4.840
WPP-LDA[10] 4.838
APW LDA [10] 4.714
MTO-ASA LDA [10] 4.650
xperiment 4.810b 37.4b

resent work: lattice inversion interionic potentials of this work; CO
otential-induced breathing model[17]; BSM: breathing shell model[20].
omparison.

a Value at 500 K and 0 GPa.
b Room temperature data[17].
c Ultrasonic data[12].
and elastic constants of B1–CaO calculated by different interionic potentials and

V) Bulk modulus,B0 (GPa) Elastic constants (GPa)

C11 C12 C44

129.8 235.5 77.0 99.2
140.4 223.9 98.7 98.7
116.1 231.9 58.2 73.0
102.0 206.0 50.0 66.0

105.9 205.6 56.1 79.4
109.0 223.0 53.0 84.0
117.0 239.0 51.6 77.4
129.0
96.0

114.0c 223.0c 59.0c 81.0c

: COMPASS Forcefield of MSI[29]; AIM: aspherical ion model[21]; PIB:
her theoretical[10] and experimental values[12,17] are also presented f

he properties of B2–CaO. From B2 to B2, this succes
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Table 3
Static properties of B2–CaO calculated by lattice inversion interionic poten-
tials, COMPASS Forcefield[29], and Modified potential-induced-breathing
(MPIB) model[19] at 0 GPa and 60 GPa, respectively

Lattice
constant,
a0 (Å)

Lattice energy,
Elattice (eV)

Bulk
modulus,
B0 (GPa)

Present worka 2.955 32.9 154
COMPASS[29]a 3.023 39.9 234
MPIB [19]a 2.890 27.5 140
Tight-binding model[30]a 2.973

Present workb 2.727 32.1 154
COMPASS[29]b 2.846 39.2 234
Experiment[15]b 2.642

Semiempirical tight-binding model[30] and experimental values[15] are
also presented for comparison.

a At 0 GPa.
b At 60 GPa.

transferability implies the advantages of potentials from the
extended phase space.

3.2. Stability of B1–CaO crystal

We took the structural stability as an important test for
the present potentials. As a set of effective potentials, we
think, the corresponding interionic forces should make the
deformed structures recover to the equilibrium phase with
the lowest energy. So based on the present interionic poten-
tials, the energy minimization for deformed B1–CaO were
performed by the conjugated gradient algorithm.

The detail of lattice deformation is described inTable 4.
The deformed structures were constructed by randomly

Table 4
Energy minimization results from the initial deformed to the final stable struc e
in the units of their equilibrium valuesa0, b0, c0, α0, β0 andγ0

Initial (unrelaxed)

a/a0, b/b0, c/c0 α/α0, β/β0, γ/γ0 Interionic po

0.3, 1.0, 1.0 1.0, 1.0, 1.0 Present wo
COMPASS

1.8, 1.0, 1.0 1.0, 1.0, 1.0 Present wo
COMPASS

1.0, 1.0, 1.0 0.3, 1.0, 1.0 Present wo
ASS

0 sent wo
ASS

1 sent wo
ASS

0 sent wo
ASS

0 sent wo
ASS

0 sent wo
ASS

1 sent wo
ASS

1 sent wo
ASS

setting the lattice parameters, for example, the lattice
constant a is from 0.3a0 to 1.8a0 (a0 is the equilib-
rium lattice constant), the axial angle is even inclined
to 27◦, and some initial structures are constructed by
simultaneously changing the lattice constants and ax-
ial angles. With the ten deformed B1–CaO’s listed in
Table 4, their energy minimizations were performed to
search the stable configurations from these initial configu-
rations.

After the energy minimizations, the final relaxed struc-
tures show that COMPASS and present potentials both ex-
hibited good abilities for describing the stability of B1–CaO,
as shown inTable 4. Only several deformed structures
could not return to the equilibrium B1–CaO based on
COMPASS potentials. This test suggests that present po-
tentials appear promising in describing of the CaO crys-
tal.

3.3. Transition from the disordered to ordered CaO

After testing the static properties of CaO crystal, we used
this lattice inversion interionic potentials to describe the tran-
sition from the disordered to the ordered states in CaO. The
disordered structure was built by randomly moving all ions
0.6Å (25% of the nearest-neighbor distance) from their ori-
g 256
c
t nergy
m red
C ial
d ons
s tates.
COMP
.3, 0.3, 0.3 0.6, 0.6, 0.6 Pre

COMP
.8, 1.8, 1.8 0.6, 0.6, 0.6 Pre

COMP
.3, 1.1, 2.0 0.9, 0.8, 1.1 Pre

COMP
.3, 0.3, 0.3 0.5, 0.6, 0.9 Pre

COMP
.5, 0.7, 0.9 0.6, 0.8, 1.2 Pre

COMP
.8, 1.8, 0.9 0.9, 0.7, 0.9 Pre

COMP
.5, 1.8, 0.8 0.8, 0.7, 1.1 Pre

COMP
tures based on different interionic potentials in which the lattice parameters ar

Final (unrelaxed)

tential a/a0, b/b0, c/c0 α/�0, β/β0, γ/γ0

rk 1.0, 1.0, 1.0 1.0, 1.0, 1.0
1.0, 1.0, 1.0 1.0, 1.0, 1.0

rk 1.0, 1.0, 1.0 1.0, 1.0, 1.0
1.0, 1.0, 1.0 1.0, 1.0, 1.0

rk 1.0, 1.0, 1.0 1.0, 1.0, 1.0
Collapsed lattice

rk 1.0, 1.0, 1.0 1.0, 1.0, 1.0
1.0, 1.0, 1.0 1.0, 1.0, 1.0

rk 1.0, 1.0, 1.0 1.0, 1.0, 1.0
Collapsed lattice

rk 1.0, 1.0, 1.0 1.0, 1.0, 1.0
1.0, 1.0, 1.7 0.6, 0.6, 1.0

rk 1.0, 1.0, 1.0 1.0, 1.0, 1.0
1.0, 1.0, 1.0 1.0, 1.0, 1.0

rk 1.0, 1.0, 1.0 1.0, 1.0, 1.0
1.1, 1.1, 1.1 0.8, 0.8, 1.2

rk 1.0, 1.0, 1.0 1.0, 1.0, 1.0
2.2, 1.0, 1.0 1.0, 0.3, 1.0

rk 1.0, 1.0, 1.0 1.0, 1.0, 1.0
1.7, 1.0, 1.0 1.0, 0.6, 1.3

in sites in a B1-type periodic supercell, which included
alcium ions and 256 oxide ions, as shown inFig. 5 (a),
hen based on the conjugated gradient algorithm, the e
inimization led to the transition from disordered to orde
aO, as shown fromFig. 5(a)−(e). The corresponding rad
istribution functions (RDFs) of intermediate configurati
how the disordered gradually changes into the ordered s
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Fig. 5. Radial distribution function (RDF) and the corresponding configurations of the transition from disordered (a) to ordered CaO (e).

This transition may be considered as a special transition path
from the molten CaO to the solid. As we know, it is very strict
for the interionic potentials to make the disordered structure
recover to the real equilibrium phase, especially the disor-

Fig. 6. Transition path in two-ion cell for conversion of B1 into B2 phase.

dered phase is obtained by randomly moving all ions 0.6Å
from their equilibrium sites. Thus this transition indicates
the present interionic potentials are valid over a wide range
of interionic distance.
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Fig. 7. The 0 K Gibbs energy as a function of pressureP and rhombohedral angleα (a), and the correspondinga–α coupling along the transition path (b).

3.4. Pressure-induced phase transition

Calcium oxide, initially in the B1 (NaCl-type) structure,
is expected to transform to the B2 (CsCl-type) structure at
high pressure. There are considerable interests in such tran-
sitions both in theoretical and experimental studies of CaO
[15,17,19,30–32]. Jeanloz et al. carried out shock-wave and
diamond-cell techniques and demonstrated a B1–B2 transi-
tion in CaO at 60–70 GPa[15]. Majewski and Vogl predicted
the structural phase transition pressure at about 70 GPa with

a tight-binding model by a total-energy-minimization pro-
cedure[30]. Sims et al. reported the transition pressure at
about 70–94 GPa using both two-body potentials and first-
principles periodic Hartree–Fock theory[31]. MPIB model
calculated the phase-transition pressure of CaO at 61 GPa
[19] which was calculated to be 55 GPa[17] with the PIB
model and 83 GPa with an interionic potential by Singh and
Sanyal[32].

In the present section, we attempt to predict the phase
transition pressure of CaO by our lattice inversion interionic
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potentials. The 0 K Gibbs free energiesG0 = E+ PVof B1 and
B2 CaO can be calculated at different pressures. As is known
to us all, the transition occurs at the pressurePtr in which the
Gibbs free energies of the two phases are equal. Therefore,
based on the above inversion pair potentials, the Gibbs free
energies of the intermediate structures were obtained. The
details are described as follows.

If we assume the rhombohedral cell inFig. 6 at a given
external pressureP along the transition path, the 0 K Gibbs
free energy surface versus cell angleα and cell lengtha could
be calculated from the interionic pair potentials. That is to say,
each of the intermediate structures was obtained by relaxing
the initial cell (a0,a0,a0,α,α,α) to the minimum-energy state
(a, a, a, α, α, α) for each fixed angleα. This path inFig. 7(a)
shows that B1 and B2 are two local minima at zero pressure,
and that B1 is lower than B2. With the increase of pressureP,
the B1 and B2 states undergo the reverse changes, the first one
rising from the minimum to the saddle point, and the second
changing from a minimum to a deeper one. The coupling of
thea, α coordinates along the transition path as a function of
pressureP is shown inFig. 7(b). At the transition pressure
Ptr the Gibbs energy of B1 is the same as that of B2. Then the
difference of Gibbs energy�G0 = G0(B1)−G0(B2) per ion
can be obtained by minimization ofG0 versus the cubic cell
parameters for each phase at different pressures. From the
e
a
t rison
[

sition
p
9 ach
g f
p e of

l phono

Table 5
Calculated and experimental phase transition pressures (GPa) between the
B1 and B2 phase of CaO

Method Transition pressure

Present model 83
PIBa 55
MPIBb 61
TBc 70
Buckinghamd 93.7
HFd 70.4
Potentiale 83
Experimentalf 63

a Potential-induced breathing model[17].
b Modified potential-induced-breathing model[19].
c Tight-binding model[30].
d Buckingham potential and Hartree–Fock calculation[31].
e [32].
f [15].

B2 structure CaO at large pressure (seeTable 3). So the
phase transition pressure is larger than the experimental
result.

3.5. Phonon dispersion curves for CaO

To fully test present potentials, we have obtained the
phonon dispersion curve for CaO. This is an exacting test
for potential models, as the phonons reflect the energetics of
the crystal when the ions sample low-symmetry configura-
tions[21]. We obtained the dispersion curve by gulp software
[33] and the result is compared to experiment[34] in Fig. 8.

The lattice inversion interionic potentials gives excellent
agreement with experiment for the acoustic modes but the LO
branch is consistently too high as compared to experiment. As
our potentials describe the stability of B1–CaO exceptionally
well, this can explain the disagreement of LO branch. The
quilibrium condition�G0 = 0 we can derivePtr = 83 GPa
s the transition pressure which is listed inTable 5, with

heoretical and experimental data also listed for compa
15,17,19,30–32].

These theories and experiment predict phase tran
ressure varying from at least 55 GPa[17] to more than
0 GPa[19]. The results using the potential-based appro
ive larger data than the experiment[15]. The reason o
resent model may be that we overestimate the volum

Fig. 8. Comparison of the calculated and experimenta
 n dispersion for CaO. Circles represent experimental data[34].
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Fig. 9. The stable configurations, corresponding binding energies and point groups for (CaO)n. The italics express the point groups. The binding energies are
given in eV.
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disagreement of optic branches also occurred obviously in
the PIB model[18] and slightly in the AIM model[21] due
to the neglect of dipolar charge relaxation.

3.6. Energies and stabilities of (CaO)n clusters

We have extended our study into energies and stabilities
of neutral (CaO)n clusters using present lattice inversion in-
terionic potentials. To our knowledge, none of the potential
models and theoretical research which are discussed in the
previous sections has given attention to this research. In pre-
vious work, a theoretical study of (CaO)n has been carried
out by means of a semiempirical tight binding method and
Malliavin and Coudray, etc. has compared its results with
those obtained with ab initio calculations[35]. In the deriva-
tion of our interionic potentials, B1 (NaCl-type), B3 (CsCl-
type), and two structures in space group P4/mmm named as
T1 and T2 are simultaneously introduced in the pseudopoten-
tials total energy calculations. This will lead to the interionic
potentials including information from six-fold-coordinate B1
to four-fold-coordinate B3, T1 and T2. This may open a road
to obtain the cluster-size independent pair potentials.

In our scheme, a fragment of B1–CaO is randomly cho-
sen, and all ions in the fragment are randomly moved by 2.0Å
from their origin sites to form an initial cluster configuration.
T mble
i )
T over
i on,
e ergy
p ent
c o zero
e con-
fi ding
e nergy
i clus-
t tions
a

s of
(
W lated
o ding
p oler-
a l-
c
a are
i nte-
r s
i
w ure
[

ect
t ind-
i . The
b
c

Fig. 10. Binding energy per molecule for the most stable configuration of
(CaO)n clusters.

binding energy per molecule indicates that the clusters are
relatively stable forn = 4, 6, 9, 12. These stable configu-
rations also well agree with the ab initio calculation results
[35]. This may demonstrate that the present pair potentials,
with the simple potential function forms, can also provide the
accurate results.

4. Conclusions

Based on the Chen–M̈obius lattice inverse technique, the
interionic pair potentials were derived from pseudopoten-
tials total energy curves of bulk B1, B3, T1 and T2 virtual
CaO crystals with their lattice constants covering from 4.0 to
14.0Å. This scheme effectively extends the phase space of
configurations beyond the equilibrium B1 structure, and then
provides interionic interactions covering more configurations
than that in conventional procedures. Through the combina-
tion of B1 and B3 structures, we deriveφSR

Ca O potential and
the ionic chargesQeff that is a fixed parameter for successive
steps. Through the combination of B1 and T1 structures, we
can deriveφSR

O O potential. SimilarlyφSR
Ca Ca potential can be

obtained by the combination of B1 and T2 structures. As the
T1 and T2 are virtual structures, it is not difficult to build
other virtual structures such as B10 (Fig. 11) to get the po-
t ined.
T rom
t rent
e ost
t plete
c s
i istri-
b the
p gy
d

s that
t itio
his routine is repeated 2000 times to produce an ense
ncluding 2000 initial configurations for the cluster (CaOn.
hen the binding energy of CaO cluster is the sum of all

nterionic pair potentials. According to energy minimizati
ach ion in clusters has to be adjusted to the minimum-en
osition. The stable cluster configurations with differ
luster sizes are consequently obtained corresponding t
nergy gradient at the minimum. Every cluster candidate
guration at different sizes is analyzed based on their bin
nergies and symmetries and the one with the lowest-e

s the most stable cluster. Consequently, the metastable
ers can also be found from the 2000 relaxed configura
ccording to their binding energies.

According to our scheme, the stable configuration
CaO)n clusters (n = 1–16) are obtained as shown inFig. 9.

ith these geometries, the binding energies are calcu
ver the all pair ionic interactions, and the correspon
oint groups have also been determined within the t
nce of 0.01̊A. We made a comparison with DMOL ca
ulations performed on neutral (CaO)n clusters by Malliavin
nd Coudray[35] and all the geometries of the clusters

n agreement with our calculations by lattice inversion i
ionic potentials fromn = 1–6 except forn = 3. Our result
ndicate that the most stable cluster geometry ofn = 3 is ring
hile Malliavin and Coudray’s result is cubelike struct

35].
Whenn varies, the stabilities of the clusters with resp

o their sizes are illustrated by the variations of the b
ng energies per molecule of the most stable structures
inding energy per molecule have been shown inFig. 10from
luster sizen = 2–16. As the function of cluster sizen, the
entials. In this way, another set of potentials are obta
hat is to say different potential form can be produced f

he choice of virtual structures. But no matter how diffe
ach potential is, the different sets of potentials give alm

he same lattice constant, lattice energy, etc. The incom
ertainty of ionic chargesQeff reflect the fact that the ion
n crystal are not isolated any more since the charge d
ution is obviously different from that of a free atom. In
resent work,Qeff is determined by fitting to the total-ener
ifference between B1– and B3–CaO crystals.

The main advantage of the present inverse method i
he extraction of these potentials are directly from ab in



C. Wang et al. / Journal of Alloys and Compounds 388 (2005) 195–207 207

Fig. 11. B10 (P4/nmm) virtual structure.

calculations without any experimental data and priori poten-
tial function forms, so the potential functions could be se-
lected in terms of the shapes of the inverted potential curves.
This reduces some uncertainties in the derivation of pair
potentials, such as prior assumption on potential functions
Therefore our lattice inverse method is more concise and rig-
orous than other potential models. We derive fairly good re-
sults by such a wonderful method. The basic reason may be
that the present pair potentials are originated from an exten-
sive phase space, in which wide variations in coordination
environment are concerned. It covers more ranges of coor-
dination numbers, ionic bond lengths and angles. As present
lattice inversion potentials are basically two-body potentials,
such properties as the phase transition pressures, LO branch
of the phonon dispersion curves have some disagreement with
the experiment. But if a better three-body interaction potential
is developed, we may have the confidence of better results.
Therefore, these new interionic potentials may be promising
in exploring and predicting the properties of ionic crystals and
this new method is worth further refinement and extending
to other ionic crystals.
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